12 research outputs found

    Outsmarting Network Security with SDN Teleportation

    Full text link
    Software-defined networking is considered a promising new paradigm, enabling more reliable and formally verifiable communication networks. However, this paper shows that the separation of the control plane from the data plane, which lies at the heart of Software-Defined Networks (SDNs), introduces a new vulnerability which we call \emph{teleportation}. An attacker (e.g., a malicious switch in the data plane or a host connected to the network) can use teleportation to transmit information via the control plane and bypass critical network functions in the data plane (e.g., a firewall), and to violate security policies as well as logical and even physical separations. This paper characterizes the design space for teleportation attacks theoretically, and then identifies four different teleportation techniques. We demonstrate and discuss how these techniques can be exploited for different attacks (e.g., exfiltrating confidential data at high rates), and also initiate the discussion of possible countermeasures. Generally, and given today's trend toward more intent-based networking, we believe that our findings are relevant beyond the use cases considered in this paper.Comment: Accepted in EuroSP'1

    Routing-Verification-as-a-Service (RVaaS): Trustworthy Routing Despite Insecure Providers

    Full text link
    Computer networks today typically do not provide any mechanisms to the users to learn, in a reliable manner, which paths have (and have not) been taken by their packets. Rather, it seems inevitable that as soon as a packet leaves the network card, the user is forced to trust the network provider to forward the packets as expected or agreed upon. This can be undesirable, especially in the light of today's trend toward more programmable networks: after a successful cyber attack on the network management system or Software-Defined Network (SDN) control plane, an adversary in principle has complete control over the network. This paper presents a low-cost and efficient solution to detect misbehaviors and ensure trustworthy routing over untrusted or insecure providers, in particular providers whose management system or control plane has been compromised (e.g., using a cyber attack). We propose Routing-Verification-as-a-Service (RVaaS): RVaaS offers clients a flexible interface to query information relevant to their traffic, while respecting the autonomy of the network provider. RVaaS leverages key features of OpenFlow-based SDNs to combine (passive and active) configuration monitoring, logical data plane verification and actual in-band tests, in a novel manner

    Study the Past if You Would Define the Future:Implementing Secure Multi-party SDN Updates

    No full text

    PRI:Privacy Preserving Inspection of Encrypted Network Traffic

    No full text
    Traffic inspection is a fundamental building block of many security solutions today. For example, to prevent the leakage or exfiltration of confidential insider information, as well as to block malicious traffic from entering the network, most enterprises today operate intrusion detection and prevention systems that inspect traffic. However, the state-of-the-art inspection systems do not reflect well the interests of the different involved autonomous roles. For example, employees in an enterprise, or a company outsourcing its network management to a specialized third party, may require that their traffic remains confidential, even from the system administrator. Moreover, the rules used by the intrusion detection system, or more generally the configuration of an online or offline anomaly detection engine, may be provided by a third party, e.g., a security research firm, and can hence constitute a critical business asset which should be kept confidential. Today, it is often believed that accounting for these additional requirements is impossible, as they contradict efficiency and effectiveness. We in this paper explore a novel approach, called Privacy Preserving Inspection (PRI), which provides a solution to this problem, by preserving privacy of traffic inspection and confidentiality of inspection rules and configurations, and e.g., also supports the flexible installation of additional Data Leak Prevention (DLP) rules specific to the company

    In-Band Synchronization for Distributed SDN Control Planes

    No full text
    Control planes of forthcoming Software-Defined Networks (SDNs) will be distributed: to ensure availability and fault-tolerance, to improve load-balancing, and to reduce over-heads, modules of the control plane should be physically distributed. However, in order to guarantee consistency of network operation, actions performed on the data plane by different controllers may need to be synchronized, which is a nontrivial task. In this paper, we propose a synchronization framework for control planes based on atomic transactions, implemented in-band, on the data-plane switches. We argue that this in-band approach is attractive as it keeps the fail-ure scope local and does not require additional out-of-band coordination mechanisms. It allows us to realize fundamen-tal consensus primitives in the presence of controller failures, and we discuss their applications for consistent policy com-position and fault-tolerant control-planes. Interestingly, by using part of the data plane configuration space as a shared memory and leveraging the match-action paradigm, we can implement our synchronization framework in today’s stan-dard OpenFlow protocol, and we report on our proof-of-concept implementation

    In-Band Synchronization for Distributed SDN Control Planes

    No full text
    International audienc

    NetSlicer: Automated and Traffic-Pattern Based Application Clustering in Datacenters

    No full text
    corecore